John G. Berberian, Ph.D.

Professor (Sabbatical 2014-2015)
Disciplines Taught: Chemical Biology, Chemistry
Office: Science Center 304A
Phone: (610) 660-1792
Fax: (610) 660-1783
Email: jberberi@sju.edu


Dr. Berberian earned his undergraduate degree at the University of Massachusetts and his Ph.D. at Brown University. His area of research is Chemical Physics and his particular interest is the structure of liquids. Dr. Berberian came to Saint Joseph's University's Chemistry Department in 1973 after spending 4 years in the Biomedical Engineering Graduate Group at the Moore School of Electrical Engineering at the University of Pennsylvania. In April 1994, he was given a joint appointment as Professor of Chemistry and Physics. His research has been supported by The Research Corporation, The Petroleum Research Fund, and the National Science Foundation. His research involves low temperature dielectric and static viscosity measurements (100K to 200K) on supercooled liquids.  

Education

  • B.S. University of Massachusetts 1959-1963 Chemistry
  • Ph.D. Brown University 1963-1968 Chemistry 

Professional Experience

  • 1968-1969 Instructor of Chemistry, Brown University, Providence, Rhode Island
  • 1969-1973 Assistant Professor of Electrical Engineering, Moore School of the University of Pennsylvania, Philadelphia, Pennsylvania
  • 1973-1978 Assistant Professor of Chemistry, Saint Joseph's College, Philadelphia, Pennsylvania
  • 1978-1982 Associate Professor of Chemistry, Saint Joseph's University, Philadelphia, Pennsylvania
  • 1982-Present Professor of Chemistry, Saint Joseph's University, Philadelphia, Pennsylvania
  • 1983-1984 Visiting Professor of Chemistry, Brown University, Providence, Rhode Island
  • 6/1985-8/1985 Visiting Professor of Chemistry, Brown University, Providence, Rhode Island 

Courses Taught

  • General Chemistry I
  • General Chemistry I Honors
  • General Chemistry II
  • General Chemistry II Honors
  • Physical Chemistry I
  • Physical Chemistry II  

Publications

 

Selected Publications

Dielectric Properties of Ethylenimine, with Robert L. Kay and G.A. Vidulich, J. Chem. Phys. 47 866-867 (1967)

Dielectric Properties of Liquid Isoamyl Bromide at Low Temperatures, with Robert H. Cole, J. Am. Chem. Soc. 90 3100-3104 (1968) Invited paper for the Debye Memorial Issue

Low Frequency Bridge for Guarded Three-Terminal and Four-Terminal Measurements of Admittance, with Robert H. Cole, Rev. Sci. Instrum. 40 811-817 (1969)

An Experiment on Dipole Moments and Polarizabilities of Gas Molecule, with Robert H. Cole, J. Chem. Ed.48 129-132 (1971)

A Method for Measuring Very Small Conductances, Rev. Sci. Instrum. 46 107-108 (1975)

Construction of an Inexpensive Platinum Electrode, with Raymond Simpson, Rev. Sci. Instrum. 47 198-200 (1976)

Modification of a Commercial Admittance Bridge to Measure Large Conductances, Rev. Sci. Instrum. 481207-1211 (1977)

Hemispherical Dielectric Permittivity Cell, with Joseph Hayden, Rev. Sci. Instrum. 49 1014-1015 (1978)

Nonlinear AC and DC Polarization of Platinum Electrodes, with Raymond W. Simpson and Herman P. Schwan, IEEE Transactions on Biomedical Engineering BME-27 166-171 (1980)

A Method for Measuring Small Rotational Velocities for a Couette-Type Viscometer, Rev. Sci. Instrum. 511136-1137 (1980)

The Steady-State Shear Viscosity of some Bromopentanes, with William L. Wilson and Paul F. Mellon, J. Chem. Phys. 76 2602-2605 (1982)

The Dipole Moments of Some Chloro- and Bromopentanes, J. Chem. Phys. 78 5269-5270 (1983)

The Steady-State Shear Viscosity of Some Chloropentanes, J. Chem. Phys. 79 5077-5079 (1983)

The Dielectric Relaxation of 3-Bromomethylpentane, IEEE Transactions on Electrical Insulation EI-20 931-934 (1985) Published in special issue honoring the 70th birthday of Prof. Robert H. Cole

Approach to Glassy Behavior of Dielectric Relaxation in 3-Bromopentane from 298 to 107 K, with Robert H. Cole, J. Chem. Phys. 84 6921-6927 (1986)

Time Domain Reflection Methods for Dielectric Measurements to 10 GHz, with R.H. Cole, S. Mashimo, G. Chryssikos, A. Burns, and E. Tombari, J. Appl. Phys. 66 793-802 (1989)

Dielectric Relaxation of 3-Bromopentane in Mixtures with 3-Methylpentane, J. Non-Cryst. Solids 131-133, 48 (1991)

Cell Design for Low Temperature Time Domain Reflectance Measurements, with R.H. Cole, Rev. Sci. Instrum. 63, 99 (1992)

Bilinear Analysis in Time Domain Reflections Measurements, J. Mol. Liquids, 56, 1 (1993)

Static Viscosity of Supercooled 3-Bromopentane in Mixtures with 3-Methylpentane, with Michael Baranekand Michael Breslin, J. Non-Cryst. Solids 172-174, 223 (1994)

Time Study of the Dielectric Relaxation of Supercooled 3-Bromopentane during Crystallization, with Michael Breslin and Robert Boyd, J. Non-Cryst. Solids 172-174, 218 (1994)

Macroscopic Lattice Gas Wetting, S.F. Burlatsky, J.G. Berberian, J. Shore and W.P. Reinherdt, Phys. Rev. E54 1489 (1996)

An Overview of Time Domain Spectroscopy, J.G. Berberian and Edward King, J. Non-Cryst. Solids, 305 10-18 (2002)

Our Past Quarter-Century Archived, Editorial in IEEE Transactions on Dielectrics and Electrical Insulation, 9, 635 (2002)

Dipole Moment of 3-Bromopentane in Various Solvents, D.P. Bulkley, T. Kember and J.G. Berberian, J. Non-Cryst. Solids, 353 4552-4554 (2007)

 

Thesis

A Null Instrument for Three-and Four-Terminal Admittance
Measurements at Ultra-Low FrequenciesII. The Dielectric Relaxation of Supercooled Isoamyl Bromide
Thesis Advisor: Professor Robert H. Cole

Research

 

Molecular motions in dielectric liquids

My area of research is the study of the structure of liquids, in particular, molecular motions in the liquid state. Fundamentally, my research deals with the correlation of molecular rotational motion with liquid properties. Dielectric spectroscopy is the mainstay experimental method used in my laboratory to measure molecular rotational motion. Static viscosity measurements complement the dielectric data, and heat capacity measurements are proposed for future measurements.

Of particular interest in our research is the wide range of time scales and temperatures involved in the measurements for the particular exemplary system used in our study. The particular system used for study is 3-bromopentane, a symmetric molecule with a dipole moment in the middle transverse to the molecular axis. This molecule is the simplest polar molecular system that will readily supercool to yield a wide range of temperatures over which the sample remains in its liquid state.

We are interested in the rate of molecular rotation of the dipole. The time scale for the rotation for a small molecule such as 3-bromopentane is in the picosecond range at room temperature and in the kilosecond range at 105K (-178 degrees Celsius). This wide range of times is covered by several measurement techniques: time domain spectroscopy (picoseconds to microseconds), admittance bridges (microseconds to 10's of seconds), and transient measurements (milliseconds to hours). The wide range of temperature used (298K to 100K) presents an additional experimental challenge for both measurement and control. A new direction in the research is the study of molecular rotation of 3-bromopentane in mixtures with its non-polar homologue, 3-methylpentane, the bromo group being approximately the same size as the methyl group. We will be looking at the rotation of the polar moiety of the mixture as the number density of the polar moiety decreases. 

Mentioned in SJU News


News and Alerts Events